ISSN 1009-6248CN 61-1149/P 双月刊

主管单位:中国地质调查局

主办单位:中国地质调查局西安地质调查中心
中国地质学会

    • 中文核心期刊
    • CSCD收录期刊
    • 中国科技核心期刊
    • Scopus收录期刊
高级检索

新疆油田百72井火山地层层序、时代及其与后山层型剖面对比

刘凯, 张新远, 李永军, 李晓山, 覃建华, 王鑫, 王韬

刘凯, 张新远, 李永军, 等. 新疆油田百72井火山地层层序、时代及其与后山层型剖面对比[J]. 西北地质, 2023, 56(4): 40-48. DOI: 10.12401/j.nwg.2023035
引用本文: 刘凯, 张新远, 李永军, 等. 新疆油田百72井火山地层层序、时代及其与后山层型剖面对比[J]. 西北地质, 2023, 56(4): 40-48. DOI: 10.12401/j.nwg.2023035
LIU Kai, ZHANG Xinyuan, LI Yongjun, et al. Volcanic Stratigraphic Sequence, Age and Comparison with Mountain Layer Type Profile of Bai 72 Well in Xinjiang Oilfield[J]. Northwestern Geology, 2023, 56(4): 40-48. DOI: 10.12401/j.nwg.2023035
Citation: LIU Kai, ZHANG Xinyuan, LI Yongjun, et al. Volcanic Stratigraphic Sequence, Age and Comparison with Mountain Layer Type Profile of Bai 72 Well in Xinjiang Oilfield[J]. Northwestern Geology, 2023, 56(4): 40-48. DOI: 10.12401/j.nwg.2023035

新疆油田百72井火山地层层序、时代及其与后山层型剖面对比

基金项目: 科技部重大专项•国家重点研发计划项目“天山−阿尔泰增生造山带大宗矿产资源基地深部探测技术示范(2018YFC0604001)”,中国石油天然气股份有限公司科学研究与技术开发项目“北疆海相泥盆−石炭系油气地质研究(2022DJ0507)”联合资助。
详细信息
    作者简介:

    刘凯(1989−),男,硕士,工程师,主要从事油田开发综合地 研究。E−mail:liukai66 @petrochina.com.cn

    通讯作者:

    李永军(1961−),男,教授,博士生导师,主要从事区域地质、构造地质学调查研究与教学工作。E−mail:yongjunl@chd.edu.cn

  • 中图分类号: P535;TE121

Volcanic Stratigraphic Sequence, Age and Comparison with Mountain Layer Type Profile of Bai 72 Well in Xinjiang Oilfield

  • 摘要:

    井中地层层序的建立和时代确定,是岩石地层单位划分与对比的关键证据,对油气藏的勘探开发具有重要意义。针对新疆百口泉油田百72井主要地层缺乏时代依据,前人所划佳木河组与山区原佳木河组层型(建组)剖面岩石组合不可对比这一关键问题,笔者重新进行了岩心编录和配套样品分析测试,获得了高精度锆石U−Pb测年成果,并结合测井资料,确立百72井1 182~2 937 m井段层序、时代。研究结果表明:该井段下部以火山熔岩为主、上部以火山碎屑岩为主,间夹多层火山喷发间隙期的陆源碎屑沉积薄层。以陆源碎屑沉积薄层为分段标志,该井段可划分为6个岩性段。在第三岩段杏仁状玄武岩、第五岩段安山质角砾熔岩中分别获得(304.3±3.9)Ma、(306.6±5.1 )Ma的LA−ICP−MS锆石U−Pb年龄,指示地层时代为晚石炭世。该岩石组合、层序及时代与百72井之北山区哈拉阿拉特组建组剖面总体可对比,故将前人对其划分二叠纪佳木河组修订为晚石炭世哈拉阿拉特组,这一成果为井中(“盆”)−北缘山区(“山”)地层对比提供了一个范例。

    Abstract:

    Establishment of stratigraphic sequence and determination of age in the well is the key evidence for the delineation and comparison of rock stratigraphic units. This is of great significance to the exploration and development of oil and gas reservoirs. In response to the key problem that the main stratigraphy of the Baikouquan oilfield Bai 72 well, in Xinjiang, lacks a chronological basis and the rock assemblage of the formerly delineated Jiamuhe Formation and the original Jiamuhe Formation in the mountainous area is not comparable, we have reconducted core compilation and supporting sample analysis and testing, established the stratigraphic sequence in the well, obtained high−precision zircon U−Pb dating results, and combined with the logging data to establish the sequence and age of the 1 182~2 937 m well section of the Bai 72 well.The results show that:The well section is dominated by volcanic lava in the lower part and volcanic clastic rocks in the upper part, interspersed with multiple layers of land−derived clastic sedimentary thin layers during the interval of volcanic eruption. The well section can be divided into six lithologic sections using the thin layers of terrestrial clastic sediments as segmentation markers. The LA−ICP−MS zircon U−Pb age of (304.3±3.9) Ma and (306.6±5.1) Ma were obtained in the almond shaped basalt of the third rock section and the ambersite breccia lava of the fifth rock section, respectively, indicating that the stratigraphic age was Late Carboniferous. The rock assemblage, stratigraphy and age are generally comparable with the Hala’alate Formation section in the northern mountainous region of the Bai 72 well, so it is revised that the Permian Jiamuhe Formation belonged to the Late Carboniferous Hala’alate Formation, providing good example of a stratigraphic comparison between the well ("basin")−northern margin mountainous in the Baikouquan oilfield.

  • 20世纪初,人们已经开始关注盆地内火山岩作为储层的现象(Powers et al.,1932Lewis,1932)。随着油气勘探程度的不断加深,火山岩油气藏这一非常规油气藏类型日益受到人们的普遍重视,目前多国的火山岩油气藏数量及产量不断提升,如日本Minami Nagaoka气田、阿根廷Austral和Neuquen盆地的中生代火山岩油气藏(Shimamoto et al.,1997Sruoga et al.,2007)。中国自1957年准噶尔盆地克拉玛依油田在石炭系火山岩中首次获得工业油流后,相继在盆地西北缘勘探出了30余个火山岩油气藏,彰显出该区域石炭系巨大的油气勘探潜力(潘建国等,2007邹才能等,2008何登发等,2010)。

    前人对井中石炭系火山岩的研究主要侧重于通过测井曲线对火山岩岩性识别(张大权等,2015胡雪冰,2016靳军等,2018),或是在剖析火山岩油气藏储层及盖层基础上分析油气成藏特征与规律等方面(Chen et al.,2016王辉等,2019),但对井下火山岩的时代和地层划分与对比研究较少,使得井区内层序关系混乱,地层格架不清(王韬等,2022陈江新等,2022)。同时,石油钻井往往因其岩心取心不连续,导致岩石地层记录不全,多数地层界面接触关系等关键记录不清,使本来的“一孔之见”在叠加了这些不足后,加大了对井区地层划分的难度,使得井间地层对比存在很多不确定性,造成了井中地层与山区建组剖面的地层(“盆–山”)对比难上加难。

    如新疆百口泉油田百72井1 182~2 937 m井段油田公司仅依据岩性组合特征将其划归二叠系佳木河组,无锆石等定年依据,且将火山角砾岩错划为火山沉积砾岩,造成井中岩性与山区佳木河组不可对比。笔者通过LA–ICP–MS锆石U–Pb定年约束了该井段火山岩成岩时代,并通过岩心重新编录,配套岩石薄片鉴定及测井曲线识别,重新建立了百72井该井深段地层序列,通过岩石学、岩相学、地层层序等对比研究,提出了新的划分方案和对比依据。

    百72井位于克拉玛依市乌尔禾区的百口泉油田内,井口坐标为x=5094 485.0,y=15382 530.1,其北西紧邻扎伊尔山和哈拉阿拉特山(图1)。据油田公司资料,该井0~1 182 m为中生代陆相沉积,1 182 m处为一不整合面,其下至2 937 m的海相火山地层原划归二叠系佳木河组。

    图  1  (a)研究区位置图(据段丰浩,2016修改),(b)西准噶尔构造格架图(据王韬等,2022修改)和(c)西准噶尔地质简图
    Figure  1.  (a) Location map of the study area, (b) Tectonic frame work of the WestJunggar and (c) Simplified geological map of the West Junggar

    百72井北西准噶尔盆地西北缘山区出露的地层自下而上主要有:下石炭统以陆源碎屑沉积为主,下部为陆源细碎屑岩包古图组(C1b),上部为陆源粗碎屑岩希贝库拉斯组(C1x)(李永军等,2010宁文涛,2019)。上石炭统以火山岩–火山碎屑岩为主,间夹正常沉积岩类,由老到新依次为成吉思汗山组(C2c)、哈拉阿拉特组(C2h)和阿腊德依克赛组(C2al)(支倩,2018李书领,2018),其中哈拉阿拉特组(C2h)可分为7个岩性段(李甘雨等,2016)。上覆二叠系佳木河组(P1j)为一套陆相冲积扇–扇三角洲相磨拉石建造(李永军等,2016),与上石炭统火山地层为角度不整合接触。二叠系之上的中生代陆相建造与井中同时期地层总体可对比,划分方案近同。

    依据本次岩心编录,结合测井曲线、岩电模版识别,确立的主要岩性及恢复的1 182~2 937 m井深段火山地层自下而上共分51层6个岩性段(图2),代表性岩性见图3。具体描述如下:

    图  2  百72井1 182~2 937 m井段岩心综合地层柱状图
    Figure  2.  Comprehensive stratigraphic histogram of 1182~2937 m well section core of Bai 72 well
    图  3  百72井1 182~2 937 m井段代表性岩性标本及显微镜下照
    a~b. 2 903.74~2 905.66 m井段1层紫红色杏仁状玄武岩;c~e. 2 485.73~2 488.66 m井段8层紫红色杏仁状玄武岩;f~g. 1 716.35~1 718.17 m 井段34层安山质角砾熔岩;h~i. 1 715.07~1 716.35 m井段35层玄武质角砾凝灰岩;j~k. 1 528.22~1 530.42 m井段41层浅灰色砾岩-砂砾岩(发育底冲刷面和鲍马序列)
    Figure  3.  The photos from hand specimen and microscope of 1 182~2 937 m well section of Bai 72 well

    C2h1段(1~4层):岩性自下而上主要为杏仁状玄武岩(图3a图3b)、角砾玄武岩、玄武岩,顶部薄层含碳质细砂岩是与C2h2段的分界标志层。该井深段主体以基性火山岩和火山碎屑岩为主,杏仁状玄武岩厚度大于48 m。

    C2h2段(5~6层):岩性主要为含角砾玄武岩,顶部以含碳质细砂岩分隔C2h3段玄武岩。

    C2h3段(7~12层):自下而上主要为含角砾玄武岩、杏仁状玄武岩(图3c~图3d)、碎裂化含角砾玄武岩,以顶部砾岩-粉砂岩分隔C2h4段。

    C2h4段(13~22层):以熔岩与火山碎屑岩(图3i)互层为特色,由玄武岩-安山岩-安山质角砾凝灰岩-流纹质凝灰岩构成多个喷发韵律层,顶部以玄武岩–玄武安山岩的结束为标志层,可区分C2h5段几乎无熔岩的大套火山碎屑岩段。

    C2h5段(23~40层):以玄武、安山质火山角砾(熔)岩(图3e~图3g)–安山质、玄武质角砾凝灰岩(图3h)为主,偶夹薄层火山熔岩。

    C2h6段(41~51层):下部以较厚砾岩-砂岩为主,发育鲍马序列(图3i),与建组剖面的火山碎屑复砾石层位大致相当,是C2h6段出现的标志层(覃建华等,2022),之上为大套玄武、安山质凝灰岩、含角砾凝灰岩、火山角砾岩等。

    总之,百72井层序上总体以下部火山熔岩、上部火山碎屑岩为特色,划分出的6个岩性段间多以火山喷发间隙期陆源碎屑沉积为分隔,是分段的标志层。

    文中用于测年分析的样品为采自井中36层(井深1 716.35 m)和8层(井深2 485.73 m)的安山质角砾熔岩(编号:B72-5-6TW)和杏仁状玄武岩(编号:B72-9-9TW)。

    B72-9-9TW(图3c~图3e)为紫红色蚀变杏仁状玄武岩,斑状结构,基质具间粒结构,杏仁状构造。岩石由斑晶(1%)和基质(94%)、杏仁(5%)组成。斑晶为斜长石,呈半自形板状,粒径为0.8 mm × 0.3 mm~1.7 mm × 0.5 mm,聚片双晶发育。基质具间粒结构,斜长石之间分布了辉石、铁质。斜长石呈半自形细板条状,粒径为0.02~0.38 mm,聚片双晶发育,杂乱分布。辉石为粒状,粒径<0.35 mm,均匀分布。杏仁石为圆形、不规则状,大小为0.2~1.1 mm,内充填皂石、绿泥石。

    B72-5-6TW(图3f~图3g)为灰色安山质角砾熔岩,角砾熔岩结构,块状构造。岩石主要由角砾(60%)组成,之间被安山岩熔岩(40%)胶结。角砾为棱角状,成分为安山岩岩屑,粒径为0.7~13 mm,内部具玻晶交织结构。熔岩的斑晶为斜长石,大小为0.56 mm × 0.4 mm~1.6 mm × 0.4 mm,半自形板状、粒状。其余为基质,占熔岩的33%,具交织结构,主要为细板条状中长石,粒径小于0.4 mm ×0.12 mm,平行分布,间隙内分布了部分脱玻隐晶帘石、长英质。岩石中含杏仁,大小为0.6~0.1 mm,内部充填硅质。

    锆石等单矿物分选由廊坊市诚信地质服务有限公司完成。锆石LA–ICP–MS U–Pb定年分析在中国地质调查局西安地质调查中心自然资源部岩浆作用成矿与找矿重点实验室完成。实验采用的激光剥蚀斑束直径为25 μm。锆石年龄采用标准锆石91500作为外部标准物质,元素采用NISTSRNI610为外标。采用Glitter(ver4.0,Macquarie University)对锆石的同位素比值及元素含量进行计算,最终年龄计算及谐和图用Isoplot(ver3.0)完成(Ludwig,2003)。

    B72-5-6TW样品共获得16个有效点的分析数据。锆石颗粒粒径为100~200 μm,多为长柱状、粒状。部分具有明显的岩浆振荡环带(图4a)。锆石Th/U值为0.41~0.98,属典型岩浆成因锆石(Hoskin et al.,2000)。表面年龄值如表1,所有锆石数据点均落在谐和线上及附近,206Pb/238U加权平均年龄为(304.3±3.9)Ma(MSWD=0.13,95%可信度)(图5a~图5b)。

    图  4  百72井安山质角砾熔岩、杏仁状玄武岩锆石阴极发光图像
    Figure  4.  Cathodoluminescence images of zircons from the andesitic breccia lava and amygdaloidal basalt in Bai 72 well
    表  1  百72井下LA–ICP–MS锆石U–Pb同位素分析结果
    Table  1.  Results of LA–ICP–MS zircon U–Pb isotope analysis of Bai 72 well
    样号同位素比值同位素年龄206Pb
    (10−6
    232Th
    (10−6
    238U
    (10−6
    Th/U
    207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    比值σ比值σ比值σ年龄σ年龄σ年龄σ
    B72-5-6TW010.051670.001460.345440.008630.048530.000842712830173055106.09123.98188.470.66
    B72-5-6TW020.053170.001970.353610.011970.048280.00091336443079304633.625.6459.950.43
    B72-5-6TW030.052960.002330.346250.014090.047460.0009732756302112996102.81128.31186.390.69
    B72-5-6TW040.052680.001370.353860.008010.048760.000823152430863075128.59185.81226.780.82
    B72-5-6TW050.052280.00160.353990.009660.049140.000872983230873095182.72184.2319.290.58
    B72-5-6TW060.051840.001720.346590.010380.048530.00086278373028305539.4342.3569.680.61
    B72-5-6TW070.052380.001820.348640.010970.048310.00088302403048304560.8463.18107.40.59
    B72-5-6TW080.053240.00160.354750.009430.048360.000843393130873045123.17169.48216.350.78
    B72-5-6TW090.053060.001420.355040.008240.048560.00081331253096306590.1993.3157.580.59
    B72-5-6TW100.053390.001730.351580.010210.047790.000853453530683015152.78257.7269.710.96
    B72-5-6TW110.052940.001470.350730.008520.048080.000813262730563035106.35117.67186.370.63
    B72-5-6TW120.052810.002730.344140.016630.047290.001033217030013298637.4229.9266.550.45
    B72-5-6TW130.053150.001430.351470.008140.047980.00083352530663025221.29379.14386.140.98
    B72-5-6TW140.052650.002070.355610.012780.049010.000933144830910308633.8623.6357.820.41
    B72-5-6TW150.053110.00150.354490.008740.048430.000813332830873055124.44155.98214.730.73
    B72-5-6TW160.05290.001220.355620.006780.048780.000783251930953075239.32184.24409.780.45
    B72-9-9TW010.053070.001340.351250.007410.048010.00077332223066302589.86220.71472.050.47
    B72-9-9TW020.05180.001430.347770.008250.04870.0008277273036307561.12198.61316.470.63
    B72-9-9TW030.052120.001450.351320.008430.048890.0008291273066308558.21184.94299.930.62
    B72-9-9TW040.052330.002190.356390.013860.049390.000913005531010311636.382.49184.90.45
    B72-9-9TW050.051950.001950.350360.012080.048910.00087283473059308565.38169.33335.640.5
    B72-9-9TW060.051860.001330.346990.007530.048520.00079279233026305590.18227.56466.480.49
    B72-9-9TW070.052830.001450.354860.008370.048710.000813222630863075191.73352.05987.850.36
    B72-9-9TW080.052720.00120.352540.006530.048490.000773171930753055160.04278.04827.820.34
    B72-9-9TW090.052010.001280.350570.007220.048880.00079286223055308553.48140.74274.10.51
    下载: 导出CSV 
    | 显示表格
    图  5  百72井安山质角砾熔岩、杏仁状玄武岩锆石U–Pb谐和曲线年龄图
    Figure  5.  U–Pb age concordia plots of zircon from the andesitic breccia lava and amygdaloidal basalt in Bai 72 well

    B72-9-9TW样品共获得10个有效点的分析数据,锆石粒径为50~150 μm,呈椭圆形—短柱状。部分锆石具有明显的岩浆振荡环带(图4b)。锆石Th/U值为0.34~0.63,属典型岩浆成因锆石(Hoskin et al.,2000)。表面年龄数据见表1,所有锆石数据点均落在谐和线上及附近,206Pb/238U加权平均年龄为(306.6±5.1)Ma(MSWD=0.10,95%可信度)(图5c~图5d)。

    按照最新的国际年代地层表划分方案,上述2个样品的成岩时代为石炭纪宾夕法尼亚亚纪,与哈拉阿拉特组建组剖面火山岩的形成时代一致(李甘雨等,2015)。

    百72井1 182~2 937 m井段岩石组合上显著有别于冲积扇–扇三角洲相磨拉石建造的二叠系佳木河组,也有别于以陆源碎屑沉积为主的下石炭统。依据同位素年龄,该井段形成时代大体与上石炭统阿腊德依克赛组、哈拉阿拉特组基本相当,但层序与阿腊德依克赛组的“下陆源碎屑岩-上火山岩”组合不同,井中岩性下部以火山熔岩为主,上部以火山碎屑岩为主,且依据非火山岩夹层可细分出多个岩性段,因此只能划归哈拉阿拉特组(李永军等,2021)。

    百72井1 182~2 937 m井段火山岩岩石组合、火山岩层序、成岩时代等与井北缘哈山一带哈拉阿拉特组C2h1~C2h6极易对比,因而成为井中(“盆”)与西北缘后山(“山”)地层“盆–山”对比的极好例证。

    (1)通过岩心编录结合测井曲线岩电模版识别,百72井1 182~2 937 m井段C2h1~3段以火山熔岩为主,C2h4~6段以火山碎屑岩为主,多个岩性段间以火山喷发间隙期的砂岩-砾岩等为分界标志层,与井北缘哈山一带哈拉阿拉特组建组剖面可对比。

    (2)百72井36层(井深1 716.35 m)安山质角砾熔岩、8层(井深2 485.73 m)杏仁状玄武岩获得LA–ICP–MS锆石U–Pb表面年龄加权平均值分别为(304.3±3.9)Ma和(306.6±5.1)Ma,约束了成岩时代为石炭纪宾夕法尼亚亚纪晚期,佐证其与哈拉阿拉特组建组剖面火山岩成岩时代相当。

    (3)综合百72井1182~2937 m井段岩石组合、地层层序、成岩时代等与油井北缘哈山一带哈拉阿拉特组C2h1~6段较好对比,为盆地井中(“盆”)与西北缘后山(“山”)地层“盆–山”对比提供了一个极好地例证。

  • 图  1   (a)研究区位置图(据段丰浩,2016修改),(b)西准噶尔构造格架图(据王韬等,2022修改)和(c)西准噶尔地质简图

    Figure  1.   (a) Location map of the study area, (b) Tectonic frame work of the WestJunggar and (c) Simplified geological map of the West Junggar

    图  2   百72井1 182~2 937 m井段岩心综合地层柱状图

    Figure  2.   Comprehensive stratigraphic histogram of 1182~2937 m well section core of Bai 72 well

    图  3   百72井1 182~2 937 m井段代表性岩性标本及显微镜下照

    a~b. 2 903.74~2 905.66 m井段1层紫红色杏仁状玄武岩;c~e. 2 485.73~2 488.66 m井段8层紫红色杏仁状玄武岩;f~g. 1 716.35~1 718.17 m 井段34层安山质角砾熔岩;h~i. 1 715.07~1 716.35 m井段35层玄武质角砾凝灰岩;j~k. 1 528.22~1 530.42 m井段41层浅灰色砾岩-砂砾岩(发育底冲刷面和鲍马序列)

    Figure  3.   The photos from hand specimen and microscope of 1 182~2 937 m well section of Bai 72 well

    图  4   百72井安山质角砾熔岩、杏仁状玄武岩锆石阴极发光图像

    Figure  4.   Cathodoluminescence images of zircons from the andesitic breccia lava and amygdaloidal basalt in Bai 72 well

    图  5   百72井安山质角砾熔岩、杏仁状玄武岩锆石U–Pb谐和曲线年龄图

    Figure  5.   U–Pb age concordia plots of zircon from the andesitic breccia lava and amygdaloidal basalt in Bai 72 well

    表  1   百72井下LA–ICP–MS锆石U–Pb同位素分析结果

    Table  1   Results of LA–ICP–MS zircon U–Pb isotope analysis of Bai 72 well

    样号同位素比值同位素年龄206Pb
    (10−6
    232Th
    (10−6
    238U
    (10−6
    Th/U
    207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    比值σ比值σ比值σ年龄σ年龄σ年龄σ
    B72-5-6TW010.051670.001460.345440.008630.048530.000842712830173055106.09123.98188.470.66
    B72-5-6TW020.053170.001970.353610.011970.048280.00091336443079304633.625.6459.950.43
    B72-5-6TW030.052960.002330.346250.014090.047460.0009732756302112996102.81128.31186.390.69
    B72-5-6TW040.052680.001370.353860.008010.048760.000823152430863075128.59185.81226.780.82
    B72-5-6TW050.052280.00160.353990.009660.049140.000872983230873095182.72184.2319.290.58
    B72-5-6TW060.051840.001720.346590.010380.048530.00086278373028305539.4342.3569.680.61
    B72-5-6TW070.052380.001820.348640.010970.048310.00088302403048304560.8463.18107.40.59
    B72-5-6TW080.053240.00160.354750.009430.048360.000843393130873045123.17169.48216.350.78
    B72-5-6TW090.053060.001420.355040.008240.048560.00081331253096306590.1993.3157.580.59
    B72-5-6TW100.053390.001730.351580.010210.047790.000853453530683015152.78257.7269.710.96
    B72-5-6TW110.052940.001470.350730.008520.048080.000813262730563035106.35117.67186.370.63
    B72-5-6TW120.052810.002730.344140.016630.047290.001033217030013298637.4229.9266.550.45
    B72-5-6TW130.053150.001430.351470.008140.047980.00083352530663025221.29379.14386.140.98
    B72-5-6TW140.052650.002070.355610.012780.049010.000933144830910308633.8623.6357.820.41
    B72-5-6TW150.053110.00150.354490.008740.048430.000813332830873055124.44155.98214.730.73
    B72-5-6TW160.05290.001220.355620.006780.048780.000783251930953075239.32184.24409.780.45
    B72-9-9TW010.053070.001340.351250.007410.048010.00077332223066302589.86220.71472.050.47
    B72-9-9TW020.05180.001430.347770.008250.04870.0008277273036307561.12198.61316.470.63
    B72-9-9TW030.052120.001450.351320.008430.048890.0008291273066308558.21184.94299.930.62
    B72-9-9TW040.052330.002190.356390.013860.049390.000913005531010311636.382.49184.90.45
    B72-9-9TW050.051950.001950.350360.012080.048910.00087283473059308565.38169.33335.640.5
    B72-9-9TW060.051860.001330.346990.007530.048520.00079279233026305590.18227.56466.480.49
    B72-9-9TW070.052830.001450.354860.008370.048710.000813222630863075191.73352.05987.850.36
    B72-9-9TW080.052720.00120.352540.006530.048490.000773171930753055160.04278.04827.820.34
    B72-9-9TW090.052010.001280.350570.007220.048880.00079286223055308553.48140.74274.10.51
    下载: 导出CSV
  • 陈江新, 徐倩, 李永军, 等. 车排子地区车47井石炭系划分及对比[J]. 新疆石油地质, 2022, 43(04): 410-416

    CHEN Jiangxin, XU Qian, LI Yongjun, et al. Stratigraphic Division and Correlation of Carboniferous Strata in Well Che 47 in Chepaizi Area[J]. Xinjiang Petroleum Geology, 2022, 43(04): 410-416.

    段丰浩. 西准噶尔达尔布特构造—岩浆带岩浆与成矿作用探讨[D]. 西安: 长安大学, 2016

    DUAN Fenghao. The study on metallogenism and magmatism of the Darbut tectono-magmatic belt, Western Junggar[D]. Xi’an: Chang’an University, 2016.

    何登发, 陈新发, 况军, 等. 准噶尔盆地石炭系油气成藏组合特征及勘探前景[J]. 石油学报, 2010, 31(01): 1-11 doi: 10.7623/syxb201001001

    HE Dengfa, LU Xinfa, KUANG Jun, et al. Characteristics and exploration potential of Carboniferous hydrocarbon plays in Junggar Basin[J]. Acta Petrolei Sinica, 2010, 31(01): 1-11. doi: 10.7623/syxb201001001

    胡雪冰. 车排子地区石炭系火山岩岩性识别及岩电模式研究[D]. 东营: 中国石油大学(华东), 2016

    HU Xuebing. Study on the Identification and Lithology Well Logging Models of Carboniferous Volcanic Rocks in Chepaizi Area [D]. Dongying: China University of Petroleum (East China), 2016.

    靳军, 王剑, 杨召等. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别[J]. 岩性油气藏, 2018, 30(2): 85–92

    JIN Jun, WANG Jian, YANG Zhao et al. Well logging identification of Carboniferous volcanic inner buried-hill reservoirs in Ke-Bai fault zone in Junggar Basin[J]. Lithologic Reservoirs, 2018, 30(2): 85–92.

    李甘雨, 李永军, 王冉, 等. 西准噶尔哈拉阿拉特组火山岩LA-ICP-MS锆石U-Pb年龄[J]. 西北地质, 2015, 48(03): 12-21 doi: 10.3969/j.issn.1009-6248.2015.03.002

    LI Ganyu, LI Yongjun, WANG Ran, et al. Zircon LA- ICP- MS U- Pb Dating of Volcanics in Hala alate Formation of Western Junggar[J]. Northwestern Geology, 2015, 48(03): 12-21. doi: 10.3969/j.issn.1009-6248.2015.03.002

    李甘雨, 李永军, 向坤鹏, 等. 西准噶尔哈拉阿拉特组的重新厘定及区域对比[J]. 地层学杂志, 2016, 40(01): 76-84

    LI Ganyu, LI Yongjun, XIANG Kunpeng, et al. Revision and Regional Correlation of the Hala’alate Formation in Western Junggar Basin[J]. Journal of Stratigraphy, 2016, 40(01): 76-84.

    李书领. 西准噶尔泥盆纪—石炭纪地层分区及典型剖面对比研究[D]. 西安: 长安大学, 2018

    LI Shuling. A study on Devonian-Carboniferous stratigraphic division and stratotype section comparison in Western Junggar[D]. Xi’an: Chang’an University, 2018.

    李永军, 李卫东, 杨高学, 等. 新疆东西准噶尔泥盆系-石炭系建组剖面及区域对比[M]. 北京: 地质出版社, 2021: 163-291

    LI Yongjun, LI Weidong, YANG Gaoxue, et al. Devonian-Carboniferous Stratotype Sections and Regional Correlation in Eastern and Western Junggar, Xinjiang[M]. Beijing: Geological Publishing House, 2021: 163–291.

    李永军, 佟丽莉, 张兵, 等. 论西准噶尔石炭系希贝库拉斯组与包古图组的新老关系[J]. 新疆地质, 2010, 28(02): 130-136 doi: 10.3969/j.issn.1000-8845.2010.02.003

    LI Yongjun, TONG Lili, ZHANG Bin, et al. On the old and new relationship between Xibeikulasi Formation andA Baogutu Formation of the carboniferous system, west jaggar[J]. Xinjiang Geology, 2010, 28(02): 130-136. doi: 10.3969/j.issn.1000-8845.2010.02.003

    李永军, 徐倩, 刘佳, 等. 新疆西准噶尔哈山地区佳木河组的重新厘定及地质意义[J]. 地球科学, 2016, 41(09): 1479-1488

    LI Yongjun, XU Qian, LIU Jia, et al. Redefinition and Geological Significance of Jiamuhe Formation in Hala’alate Mountain of West Junggar, Xinjiang[J]. Earth Science, 2016, 41(09): 1479-1488.

    宁文涛. 新疆东、西准噶尔下石炭统典型剖面对比研究[D]. 西安: 长安大学, 2019

    NING Wentao. The Comparative Study of Standard Stratotype Section in Lower Carboniferous at East and West of Junggar, Xinjiang[D]. Xi’an: Chang’an University, 2019.

    潘建国, 郝芳, 谭开俊, 等. 准噶尔盆地红车断裂带古生界火山岩油气藏特征及成藏规律[J]. 岩性油气藏, 2007, 19(2): 53–56 doi: 10.3969/j.issn.1673-8926.2007.02.010

    PAN Jianguo, HAO Fang, TANKaijun, et al. Characteristics and accumulation of Paleozoic volcanic rock reservoirs in Hongche fault belt, Junggar Basin[J]. Lithologic Reservoirs, 2007, 19(2): 53–56. doi: 10.3969/j.issn.1673-8926.2007.02.010

    覃建华, 李永军, 王盼龙, 等. 西准噶尔乌尔禾地区哈拉阿拉特组火山碎屑复理石的发现及地质意义[J]. 西北地质, 2022, 55(03): 274-285 doi: 10.19751/j.cnki.61-1149/p.2022.03.022

    QIN Jianhua, LI Yongjun, WANG Panlong, et al. The Discovery and Geological Significance of Pyroclastic Flysch of Hala’alate Formation in Urho Area of West J unggar[J]. Northwestern Geology, 2022, 55(03): 274-285. doi: 10.19751/j.cnki.61-1149/p.2022.03.022

    王辉, 邱争科, 周庆, 等. 克拉玛依油田六区、七区、九区石炭系火山岩内幕成藏规律研究[J]. 特种油气藏, 2019, 26(04): 33-37+153 doi: 10.3969/j.issn.1006-6535.2019.04.006

    WANG Hui, QIU Zhenke, ZHOU Qing, et al. Carboniferous Volcanic Inside Hydrocarbon Accumulation Patterns in the 6th, 7th and 9th Districts of Karamay Oilfield [J]. Special Oil and Gas Reservoirs, 2019, 26(04): 33-37+153. doi: 10.3969/j.issn.1006-6535.2019.04.006

    王韬, 徐倩, 李永军, 等. 车排子油田南部火山岩地质时代及成因[J]. 新疆石油地质, 2022, 43(02): 160-168

    WANG Tao, XU Qian, LI Yongjun, et al. Geological Age and Petrogenesis of Volcanic Rocks in Southern Chepaizi Oilfield[J]. Xinjiang Petroleum Geology, 2022, 43(02): 160-168.

    支倩. 新疆东、西准噶尔上石炭统典型剖面对比研究[D]. 西安: 长安大学, 2018

    ZHI Qian. A comparative study on the upper Carboniferous standard stratotype-section profiles in the eastern and western Junggar, Xinjiang, NW China[D]. Xi’an: Chang’an University, 2018.

    邹才能, 赵文智, 贾承造, 等. 中国沉积盆地火山岩油气藏形成与分布[J]. 石油勘探与开发, 2008, 35(3): 257-271 doi: 10.3321/j.issn:1000-0747.2008.03.001

    ZOU Caineng, ZHAO Wenzhi, JIA Chengzao, et al. Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J]. PETROL EUM EXPI OR ATION AND DEVELOPMENT, 2008, 35(3): 257-271. doi: 10.3321/j.issn:1000-0747.2008.03.001

    张大权, 邹妞妞, 姜杨, 等. 火山岩岩性测井识别方法研究——以准噶尔盆地火山岩为例[J]. 岩性油气藏, 2015, 27(01): 108–114 doi: 10.3969/j.issn.1673-8926.2015.01.016

    ZHANG Daquan, ZOU Niuniu, JIANG Yang, et al. Logging identification method of volcanic rock lithology: A case study from volcanic rock in Junggar Basin[J]. Lithologic Reservoirs, 2015, 27(01): 108–114. doi: 10.3969/j.issn.1673-8926.2015.01.016

    CHEN Zhonghong, WANG Xulong, ZHA Ming, et al. Characteristics and formation mechanisms of large volcanic rock oil reservoirs: A case study of the Carboniferous rocks in the Kebai fault zone of Junggar Basin, China[J]. AAPG Bulletin, 2016, 100(10): 1585–1617.

    Lewis W J. Occurrence of oil in igneous rocks of Cuba[J]. AAPG Bulletin, 1932, 16(8): 809-818.

    Ludwig K. R. Isoplot 3.00: A geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4: 1-70.

    Powers S, Cla G F. Nature and origin of occurrences of oil, gas, and bitumen in igneous and metamorphic rocks[J]. AAPG Bulletin, 1932, 16(8): 719-726.

    P. W. O. Hoskin, L. P. Black. Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon[J]. Journal of metamorphic Geology, 2000, 18(4): 423-439. doi: 10.1046/j.1525-1314.2000.00266.x

    Shimamoto T, Inoue N, Sato K. Characterization of a Volcanic Formation Through Comprehensive Well Test Analyses[J]. Society of Petroleum Engineers, SPE(37413), 1997: 243-250.

    Sruoga P, Rubinstein N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina[J]. AAPG Bulletin, 2007, 91: 115-129. doi: 10.1306/08290605173

  • 期刊类型引用(4)

    1. 张新远,李永军,刘凯,王锋,彭南赫,付浩. 克拉玛依油田K82井区上乌尔禾组油气成藏特征研究. 西北地质. 2024(02): 14-23 . 本站查看
    2. 李永军,王盼龙,支倩,黄家瑄,张新远,李伟,段丰浩. 西准噶尔乌尔禾地区哈拉阿拉特组富斑碱性玄武岩年代学、地球化学及地质意义. 岩石学报. 2024(07): 2037-2055 . 百度学术
    3. 王玉伟,李永军,王盼龙,王韬,黄家瑄,张新远,郑孟林,张越迁. 克拉玛依克百断槽火山岩岩石组合、层位归属及地质意义:来自古66井的约束. 西北地质. 2024(05): 209-223 . 本站查看
    4. 张景,李永军,覃建华,李思远,阿克丹·斯坎迪尔,王盼龙,王鑫,黄家瑄,张新远. 气孔杏仁状玄武岩有利储层划分方案初探——以新疆乌尔禾地区哈拉阿拉特组第一岩性段为例. 地球科学与环境学报. 2023(05): 1210-1226 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  42
  • PDF下载量:  58
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-02-22
  • 修回日期:  2023-03-09
  • 录用日期:  2023-03-11
  • 网络出版日期:  2023-03-16
  • 刊出日期:  2023-08-19

目录

/

返回文章
返回